Automated analysis of privacy policies has proved a fruitful research direction, with developments such as automated policy summarization, question answering systems, and compliance detection. Prior research has been limited to analysis of privacy policies from a single point in time or from short spans of time, as researchers did not have access to a large-scale, longitudinal, curated dataset. To address this gap, we developed a crawler that discovers, downloads, and extracts archived privacy policies from the Internet Archive's Wayback Machine. Using the crawler and following a series of validation and quality control steps, we curated a dataset of 1,071,488 English language privacy policies, spanning over two decades and over 130,000 distinct websites. Our analyses of the data paint a troubling picture of the transparency and accessibility of privacy policies. By comparing the occurrence of tracking-related terminology in our dataset to prior web privacy measurements, we find that privacy policies have consistently failed to disclose the presence of common tracking technologies and third parties. We also find that over the last twenty years privacy policies have become even more difficult to read, doubling in length and increasing a full grade in the median reading level. Our data indicate that self-regulation for first-party websites has stagnated, while self-regulation for third parties has increased but is dominated by online advertising trade associations. Finally, we contribute to the literature on privacy regulation by demonstrating the historic impact of the GDPR on privacy policies.


翻译:对隐私政策进行自动化分析已证明是一个富有成果的研究方向,其发展动态包括自动化政策总结、问答系统和合规检测等。先前的研究仅限于从一个时间点或短时间段分析隐私政策,因为研究人员无法获得大规模、纵向和经整理的数据集。为弥补这一差距,我们开发了一个爬行器,从因特网档案的“回路机器”中发现、下载和提取存档隐私政策。利用爬行器和一系列验证和质量控制步骤,我们整理了一套1,071,488个英语隐私政策,涵盖20多年和130多个不同网站。我们的数据分析描绘了隐私政策透明度和可获取性方面令人不安的图景。通过将我们数据集中与跟踪有关的术语的出现与先前的网络隐私测量进行比较,我们发现隐私政策一直未能披露共同跟踪技术和第三方的存在。我们还发现,在过去二十年中层隐私政策变得更加难以阅读,其长度翻了一番,并在中位读文献中位增加了整整1,300多个不同网站。我们的数据分析描绘了隐私政策的透明度和可获取性图象。最后,通过在线监管,我们数据库的自我监管增加了在线监管,从而展示了公司内部监管,从而提高了自我监管。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
0+阅读 · 2021年7月14日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员