Thanks to the use of convolution and pooling layers, convolutional neural networks were for a long time thought to be shift-invariant. However, recent works have shown that the output of a CNN can change significantly with small shifts in input: a problem caused by the presence of downsampling (stride) layers. The existing solutions rely either on data augmentation or on anti-aliasing, both of which have limitations and neither of which enables perfect shift invariance. Additionally, the gains obtained from these methods do not extend to image patterns not seen during training. To address these challenges, we propose adaptive polyphase sampling (APS), a simple sub-sampling scheme that allows convolutional neural networks to achieve 100% consistency in classification performance under shifts, without any loss in accuracy. With APS the networks exhibit perfect consistency to shifts even before training, making it the first approach that makes convolutional neural networks truly shift invariant.


翻译:由于使用进化层和集合层,长期认为进化神经网络是变换型的,但最近的工作表明,CNN的输出随着输入量的微小变化可以发生重大变化:一个由下层抽样(Stride)层造成的问题;现有的解决方案要么依靠数据增强,要么依靠反丑化,两者都有局限性,两者都无法实现完全的变换。此外,从这些方法获得的收益并不延伸到培训期间所看不到的图像模式。为了应对这些挑战,我们建议采用适应性多相取样(APS),这是一个简单的子抽样计划,允许进化神经网络在轮班中实现100%的分类性能一致性,不造成任何准确损失。随着APS的网络在培训前就表现出完全的变换一致性,它成为使进化神经网络真正变换的第一种方法。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
150+阅读 · 2020年6月28日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
CVPR 2020 论文大盘点-光流篇
计算机视觉life
9+阅读 · 2020年7月17日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
Arxiv
27+阅读 · 2020年6月19日
已删除
Arxiv
32+阅读 · 2020年3月23日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
CVPR 2020 论文大盘点-光流篇
计算机视觉life
9+阅读 · 2020年7月17日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
相关论文
Arxiv
27+阅读 · 2020年6月19日
已删除
Arxiv
32+阅读 · 2020年3月23日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
7+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员