We prove that some time Euler schemes for the 3D Navier-Stokes equations modified by adding a Brinkman-Forchheimer term and subject to a random perturbation converge in mean square. This extends previous results about the strong speed of convergence of some time discretization schemes for the 2D Navier Stokes equations. Unlike in the 2D case, in our 3D model the Brinkman-Forchheimer term enables to obtain a strong speed of convergence of order almost 1/2 independent of the viscosity parameter.
翻译:我们证明,对3D Navier-Stokes 等式的Euler 方案经过了一段时间的修改,增加了一个 Brinkman-Forchheimer 术语,并受到随机扰动的合并为平均正方形。这扩大了先前关于2D Navier Stokes 等式某些时间分解方案的高度趋同速度的结果。 与2D不同的是,在我们3D 模型中, Brinkman-Forchheimer 术语能够获得几乎1.5/2的强烈顺序趋同速度,而与粘度参数无关。