We present a numerical study of solutions to the $2d$ cubic and quintic focusing nonlinear Schr\"odinger equation in the exterior of a smooth, compact and strictly convex obstacle (a disk) with Dirichlet boundary condition. We first investigate the effect of the obstacle on the behavior of solutions traveling toward the obstacle at different angles and with different velocities directions. We introduce a new concept of weak and strong interactions of the solutions with the obstacle. Next, we study the existence of blow-up solutions depending on the type of the interaction and show how the presence of the obstacle changes the overall behavior of solutions (e.g., from blow-up to global existence), especially in the strong interaction case, as well as how it affects the shape of solutions compared to their initial data, (e.g., splitting into transmitted and reflected parts). We also investigate the influence of the size of the obstacle on the eventual existence of blow-up solutions in the strong interaction case in terms of the transmitted and the reflected parts of the mass. Moreover, we show that the sharp threshold for global existence vs. finite time blow-up solutions in the mass critical case in the presence of the obstacle is the same as the one given by Weinstein for {\rm{NLS}} in the whole Euclidean space $\R^d$. Finally, we construct new Wall-type initial data that blows up in finite time after a strong interaction with an obstacle and having a very distinct dynamics compared with all other blow-up scenarios and dynamics for the {\rm{NLS}} in the whole Euclidean space $\R^d$.
翻译:我们展示了对2美元立方和五角形的非线性碳酸 Schr\"的方程式的数值研究。 我们首先调查了解决方案在不同角度和不同速度方向走向障碍的行为所面临的障碍影响。 我们引入了解决方案与障碍之间薄弱和密切互动的新概念。 其次, 我们根据互动的类型来研究爆破解决方案的存在, 并表明存在障碍如何改变解决方案的总体行为( 例如, 从吹到全球存在, 由吹到清晰的阻力障碍( 盘盘盘) ) 的外部, 以及Drichlet 边界条件。 我们首先调查了解决方案在不同角度和不同速度方向走向走向障碍( 例如, 分裂到传输和反射部分)。 我们还调查了障碍大小对在强烈互动案例中最终存在爆炸解决方案的影响, 取决于传输和反射质量部分。 此外,我们展示了全球存在的坚固的门槛值门槛值( ) 与最坚固的 R 时间级 相对于我们整个空间动态中一个临界型的硬度 。