The advent of noisy intermediate-scale quantum (NISQ) computers raises a crucial challenge to design quantum neural networks for fully quantum learning tasks. To bridge the gap, this work proposes an end-to-end learning framework named QTN-VQC, by introducing a trainable quantum tensor network (QTN) for quantum embedding on a variational quantum circuit (VQC). The architecture of QTN is composed of a parametric tensor-train network for feature extraction and a tensor product encoding for quantum encoding. We highlight the QTN for quantum embedding in terms of two perspectives: (1) we theoretically characterize QTN by analyzing its representation power of input features; (2) QTN enables an end-to-end parametric model pipeline, namely QTN-VQC, from the generation of quantum embedding to the output measurement. Our experiments on the MNIST dataset demonstrate the advantages of QTN for quantum embedding over other quantum embedding approaches.
翻译:杂音中间级量子(NISQ)计算机的出现对设计量子神经网络以完成量子学习任务提出了关键的挑战。为了弥合这一差距,这项工作提议了一个名为QTN-VQC的端到端学习框架,方法是引入一个可培训的量子强网络,用于将量子嵌入变异量子量子电路(VQC)。QTN的架构由特征提取的参数光学强力阵列网络和量子编码的数子产品编码组成。我们从两个角度强调量子嵌入的QTN:(1) 我们从理论上通过分析输入功能的表示力来定性QTN;(2) QTN允许从量嵌入生成到输出测量的终端到端的参数模拟管道,即QTN-VQC。我们在MIST数据集上的实验展示了QTN对量子嵌入超过其他量子嵌入方法的优势。