We go through the process of crafting a robust and numerically stable online algorithm for the computation of the Watanabe-Akaike information criteria (WAIC). We implement this algorithm in the NIMBLE software. The implementation is performed in an online manner and does not require the storage in memory of the complete samples from the posterior distribution. This algorithm allows the user to specify a specific form of the predictive density to be used in the computation of WAIC, in order to cater to specific prediction goals. We then comment and explore via simulations the use of different forms of the predictive density in the context of different predictive goals. We find that when using marginalized predictive densities, WAIC is sensitive to the grouping of the observations into a joint density.
翻译:我们经历了为计算 Watanabe-Akaike 信息标准(WAIC)而设计一个稳健和数字稳定的在线算法的过程。 我们在 NNPBL 软件中应用了这一算法。 实施过程以在线方式进行, 不需要存储事后分布的完整样本。 这个算法允许用户指定一种特定形式的预测密度, 用于计算WAIC, 以适应具体的预测目标。 然后我们通过模拟, 在不同预测目标的背景下使用不同形式的预测密度。 我们发现, 当使用边缘化预测密度时, WAIC 会对观测结果的组合形成共同密度敏感 。