We describe a rational approach to reduce the computational and communication complexities of lossless point-to-point compression for computation with side information. The traditional method relies on building a characteristic graph with vertices representing the source symbols and with edges that assign a source symbol to a collection of independent sets to be distinguished for the exact recovery of the function. Our approach uses fractional coloring for a b-fold coloring of characteristic graphs to provide a linear programming relaxation to the traditional coloring method and achieves coding at a fine-grained granularity. We derive the fundamental lower bound for compression, given by the fractional characteristic graph entropy, through generalizing the notion of K\"orner's graph entropy. We demonstrate the coding gains of fractional coloring over traditional coloring via a computation example. We conjecture that the integrality gap between fractional coloring and traditional coloring approaches the smallest b that attains the fractional chromatic number to losslessly represent the independent sets for a given characteristic graph, up to a linear scaling which is a function of the fractional chromatic number.
翻译:我们描述一种合理的方法来减少无损点到点压缩的计算和通信复杂性,以便用侧边信息进行计算。 传统方法依赖于用代表源符号和边缘的脊柱构建一个特征图形,为独立数据集的集合指定一个源符号,以区分功能的准确恢复。 我们的方法使用分数颜色来为特征图形的双倍颜色进行分解,以提供传统色谱方法的线性编程松动,并在细微微微微颗粒中实现编码。 我们从分数特征图形昆虫中得出一个基本较低的压缩框, 其方法是将 K\ “ orner” 图形的图形昆虫概念概括化。 我们通过一个计算示例来显示在传统色谱上绘制分数的编码收益。 我们推测, 分数颜色和传统色谱之间的整体分差差将接近最小的 b, 以最小的b 达到微分色数为无损的分数。 我们推算出, 代表特定特性图形的独立组, 直至直线缩缩缩, 这是分数数的函数的函数 。