We describe a new algorithm for vertex cover with runtime $O^*(1.25298^k)$, where $k$ is the size of the desired solution and $O^*$ hides polynomial factors in the input size. This improves over previous runtime of $O^*(1.2738^k)$ due to Chen, Kanj, & Xia (2010) standing for more than a decade. The key to our algorithm is to use a potential function which simultaneously tracks $k$ as well as the optimal value $\lambda$ of the vertex cover LP relaxation. This approach also allows us to make use of prior algorithms for Maximum Independent Set in bounded-degree graphs and Above-Guarantee Vertex Cover. The main step in the algorithm is to branch on high-degree vertices, while ensuring that both $k$ and $\mu = k - \lambda$ are decreased at each step. There can be local obstructions in the graph that prevent $\mu$ from decreasing in this process; we develop a number of novel branching steps to handle these situations.
翻译:我们描述一个新的顶点覆盖算法, 其运行时间为$[( 1.25298]k] 美元, 其中K$是理想溶液的大小, $O$隐藏输入大小的多元系数。 这比先前运行时间( 1. 2738]k) 美元有所改进, 因为Chen, Kanj, & Xia (2010年) 站立了十多年。 我们算法的关键是使用一个潜在函数, 该函数同时跟踪美元和顶点覆盖LP 放松的最佳值 $\lambda$。 这种方法还允许我们使用以前在约束度图形和高担保度Vertex 封面中为最大独立设置的算法。 算法中的主要步骤是在高度脊椎上分支, 同时确保每步都减少 $\ mu = k -\ lambda$ 。 图表中可能存在防止 $\ mu$在此过程中减少的局部障碍 。 我们开发了一些处理这些情况的新分支步骤 。