We introduce a general stochastic optimization framework to obtain optimal convergence (virtual) bid curves. Within this framework, we develop a computationally tractable linear programming-based optimization model, which produces bid prices and volumes simultaneously. We also show that different approximations and simplifications in the general model lead naturally to well-known convergence bidding approaches, such as self-scheduling and opportunistic approaches.
翻译:我们引入了一般的随机优化框架,以取得最佳趋同(虚拟)投标曲线;在此框架内,我们开发了可计算、可移动的线性编程优化模式,该模式同时产生投标价格和数量;我们还表明,一般模式的不同近似和简化自然导致众所周知的趋同投标方法,如自行安排和机会主义方法。