Pansharpening is a fundamental issue in remote sensing field. This paper proposes a side information partially guided convolutional sparse coding (SCSC) model for pansharpening. The key idea is to split the low resolution multispectral image into a panchromatic image related feature map and a panchromatic image irrelated feature map, where the former one is regularized by the side information from panchromatic images. With the principle of algorithm unrolling techniques, the proposed model is generalized as a deep neural network, called as SCSC pansharpening neural network (SCSC-PNN). Compared with 13 classic and state-of-the-art methods on three satellites, the numerical experiments show that SCSC-PNN is superior to others. The codes are available at https://github.com/xsxjtu/SCSC-PNN.
翻译:泛色图像是遥感领域的一个基本问题。 本文建议了一种部分引导的全色化、 部分引导的分层稀释编码模型( SCSC) 。 关键的想法是将低分辨率多光谱图像分成一个全色图像相关特征地图和一个全色图像相关特征地图, 前者由全色图像的侧端信息规范化为全色图像。 根据算法解滚技术原则, 拟议的模型作为深层神经网络( SCSC- PNN), 被称为 SCSC 泛光神经网络( SC- PNN) 。 与三颗卫星的13种经典和最新方法相比, 数字实验显示, SC- PNN 优于其他卫星。 代码可在 https://github.com/xxxxjtu/SC- PNN 上查阅。