As future energy systems become more decentralised due to the integration of renewable energy resources and storage technologies, several autonomous energy management and peer-to-peer trading mechanisms have been recently proposed for the operation of energy hub networks based on optimization and game theory. However, most of these strategies have been tested either only in simulated environments or small prosumer units as opposed to larger energy hubs. This simulation reality gap has hindered large-scale implementation and practical application of these method. In this paper, we aim to experimentally validate the performance of a novel multi-horizon distributed model predictive controller for an energy hub network by implementing the controller on a complete network of hubs comprising of a real energy hub inter-faced with multiple virtual hubs. The experiments are done using two different network topologies and the controller shows promising results in both setups.
翻译:暂无翻译