In this work we study Variational Autoencoders (VAEs) from the perspective of harmonic analysis. By viewing a VAE's latent space as a Gaussian Space, a variety of measure space, we derive a series of results that show that the encoder variance of a VAE controls the frequency content of the functions parameterised by the VAE encoder and decoder neural networks. In particular we demonstrate that larger encoder variances reduce the high frequency content of these functions. Our analysis allows us to show that increasing this variance effectively induces a soft Lipschitz constraint on the decoder network of a VAE, which is a core contributor to the adversarial robustness of VAEs. We further demonstrate that adding Gaussian noise to the input of a VAE allows us to more finely control the frequency content and the Lipschitz constant of the VAE encoder networks. To support our theoretical analysis we run experiments with VAEs with small fully-connected neural networks and with larger convolutional networks, demonstrating empirically that our theory holds for a variety of neural network architectures.
翻译:在这项工作中,我们从和谐分析的角度研究挥发自动电解码器(VAE),通过将VAE的潜在空间视为高山空间、多种测量空间,我们得出了一系列结果,表明VAE的编码器差异控制了VAE编码器和解码器神经网络参数参数参数函数的频率内容。特别是,我们证明较大的编码器差异减少了这些功能的高频率内容。我们的分析使我们能够表明,这种差异的增加有效地导致VAE的潜在空间软 Lipschitz对VAE的解码器网络的软软限制,而后者是VAE的对抗性强力的核心推动者。我们进一步证明,在VAE输入的编码器中添加高斯噪音,使我们能够更准确地控制VAE电解码网络的频率内容和利普施茨常数。为了支持我们的理论分析,我们与VAE公司进行实验时使用的是小型的完全连接的神经网络和较大的变动网络,从经验上证明了我们理论中掌握了各种神经网络结构。