Individual's semantics have been used for guiding the learning process of Genetic Programming solving supervised learning problems. The semantics has been used to proposed novel genetic operators as well as different ways of performing parent selection. The latter is the focus of this contribution by proposing three heuristics for parent selection that replace the fitness function on the selection mechanism entirely. These heuristics complement previous work by being inspired in the characteristics of the addition, Naive Bayes, and Nearest Centroid functions and applying them only when the function is used to create an offspring. These heuristics use different similarity measures among the parents to decide which of them is more appropriate given a function. The similarity functions considered are the cosine similarity, Pearson's correlation, and agreement. We analyze these heuristics' performance against random selection, state-of-the-art selection schemes, and 18 classifiers, including auto-machine-learning techniques, on 30 classification problems with a variable number of samples, variables, and classes. The result indicated that the combination of parent selection based on agreement and random selection to replace an individual in the population produces statistically better results than the classical selection and state-of-the-art schemes, and it is competitive with state-of-the-art classifiers. Finally, the code is released as open-source software.
翻译:个人语义学被用于指导遗传基因规划的学习过程,解决受监督的学习问题; 语义学被用于提出新的基因操作员以及不同的选择父母的方式。 后者是这一贡献的重点,它为家长选择提出了三种取代选择机制上健身功能的超自然学, 完全取代了选择机制上的健身功能。 这些文义学补充了先前的工作, 其灵感来自添加的特性, 即 Naive Bayes 和 Nearest Centrid 的语义学功能, 并且只在函数被用于创建后代时才应用这些功能。 这些文义学学用不同的类似性措施, 来决定谁是更合适的功能。 所考虑的相似性功能是共生相似性、 Pearson 的相互关系和协议。 我们根据随机选择、 状态选择计划以及18个叙级( 包括自动机械学习技术), 其分类问题有30个不同数量的样本、 变量和类别。 结果显示, 基于协议和随机选择的家长选择组合, 以取代人口中的个人, 相似性功能, 以及相近似相近似性功能学-, 我们分析这些超前的软件选择, 的分类法系- 以开放的分类法系- 系统- 与开放的分类法系- 的分类法系- 的系统- 的分类- 的分类法系- 以开放和版本- 的分类法系- 以开放性- 的分类法系- 的分类法系- 与开放性- 的分类- 比较- 制- 制- 制- 分为最后- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制- 制-