A lot of work has been done towards reconstructing the 3D facial structure from single images by capitalizing on the power of Deep Convolutional Neural Networks (DCNNs). In the recent works, the texture features either correspond to components of a linear texture space or are learned by auto-encoders directly from in-the-wild images. In all cases, the quality of the facial texture reconstruction is still not capable of modeling facial texture with high-frequency details. In this paper, we take a radically different approach and harness the power of Generative Adversarial Networks (GANs) and DCNNs in order to reconstruct the facial texture and shape from single images. That is, we utilize GANs to train a very powerful facial texture prior \edit{from a large-scale 3D texture dataset}. Then, we revisit the original 3D Morphable Models (3DMMs) fitting making use of non-linear optimization to find the optimal latent parameters that best reconstruct the test image but under a new perspective. In order to be robust towards initialisation and expedite the fitting process, we propose a novel self-supervised regression based approach. We demonstrate excellent results in photorealistic and identity preserving 3D face reconstructions and achieve for the first time, to the best of our knowledge, facial texture reconstruction with high-frequency details.
翻译:通过利用深革命神经网络的力量,从单一图像中重建3D面部结构已经做了大量工作。在最近的作品中,纹理特征要么与线性纹理空间的组件相对应,要么由自动编码器直接从动态图像中学习。在所有情况下,面部纹理重建的质量仍然无法用高频细节模拟面部纹理。在本文中,我们采取了完全不同的方法,利用基因反反向网络和DCNNE的力量,以便从单一图像中重建面部纹理和形状。这就是,我们利用GANs来训练一个非常强大的面部纹理,在3D型大规模纹理数据集中直接进行。然后,我们重新审视最初的3D Morphable 模型的质量,利用非线性优化来找到最佳的潜值参数,以最佳的方式重建测试图像图像,但在新的视角下,我们为初始化和加快面部纹理的面部纹理和形状形状的形状形状形状。为了在开始初始化之前,我们利用GANS培训一个非常强大的面部纹理,我们提出了一个以最优的图像为基础的格式重建过程。