Whereas it is believed that techniques such as Adam, batch normalization and, more recently, SeLU nonlinearities "solve" the exploding gradient problem, we show that this is not the case in general and that in a range of popular MLP architectures, exploding gradients exist and that they limit the depth to which networks can be effectively trained, both in theory and in practice. We explain why exploding gradients occur and highlight the *collapsing domain problem*, which can arise in architectures that avoid exploding gradients. ResNets have significantly lower gradients and thus can circumvent the exploding gradient problem, enabling the effective training of much deeper networks, which we show is a consequence of a surprising mathematical property. By noticing that *any neural network is a residual network*, we devise the *residual trick*, which reveals that introducing skip connections simplifies the network mathematically, and that this simplicity may be the major cause for their success.
翻译:虽然人们相信亚当、批量正常化和最近SELU的非线性“解决”爆炸梯度问题等技术,但我们表明,一般情况并非如此,在广受欢迎的多层多层多层结构中,存在爆炸梯度,它们限制了网络在理论和实践上进行有效培训的深度。我们解释了爆炸梯度为何会发生,并突出在避免爆炸梯度的结构中可能出现的* 重叠域的问题*。ResNet的梯度明显较低,因此可以绕过爆炸梯度问题,从而能够有效培训更深层网络,我们所显示的是,这是一个令人惊讶的数学属性的结果。我们通过注意到任何神经网络都是残余网络,我们设计了“累进图案* ”, 这表明引入跳过连接会以数学方式简化网络,而这种简单化可能是其成功的主要原因。