This article provides an overview on the statistical modeling of complex data as increasingly encountered in modern data analysis. It is argued that such data can often be described as elements of a metric space that satisfies certain structural conditions and features a probability measure. We refer to the random elements of such spaces as random objects and to the emerging field that deals with their statistical analysis as metric statistics. Metric statistics provides methodology, theory and visualization tools for the statistical description, quantification of variation, centrality and quantiles, regression and inference for populations of random objects for which samples are available. In addition to a brief review of current concepts, we focus on distance profiles as a major tool for object data in conjunction with the pairwise Wasserstein transports of the underlying one-dimensional distance distributions. These pairwise transports lead to the definition of intuitive and interpretable notions of transport ranks and transport quantiles as well as two-sample inference. An associated profile metric complements the original metric of the object space and may reveal important features of the object data in data analysis We demonstrate these tools for the analysis of complex data through various examples and visualizations.
翻译:暂无翻译