Drift theory is an intuitive tool for reasoning about random processes: It allows turning expected stepwise changes into expected first-hitting times. While drift theory is used extensively by the community studying randomized search heuristics, it has seen hardly any applications outside of this field, in spite of many research questions that can be formulated as first-hitting times. We state the most useful drift theorems and demonstrate their use for various randomized processes, including the coupon collector process, winning streaks, approximating vertex cover, and a random sorting algorithm. We also consider processes without expected stepwise change and give theorems based on drift theory applicable in such scenarios. We use these theorems for the analysis of the gambler's ruin process, for a coloring algorithm, for an algorithm for 2-SAT, and for a version of the Moran process without bias. A final tool we present is a tight theorem for processes on finite state spaces, which we apply to the Moran process. We aim to enable the reader to apply drift theory in their own research to derive accessible proofs and to teach it as a simple tool for the analysis of random processes.
翻译:漂移理论是随机过程推理的直觉工具: 它允许将预期的分步变化转换成预期的先触发时间。 尽管流流理论被社区广泛使用, 研究随机的搜索疲劳理论, 但是它几乎看不到这个领域以外的任何应用, 尽管有许多研究问题可以作为先触发的时间来制定。 我们陈述了最有用的漂移理论, 并展示了它们用于各种随机化过程, 包括质谱采集器过程、 赢取连线、 近似顶部覆盖和随机排序算法。 我们还考虑没有预期的分步变化的过程, 并给出基于适用于此类情形的漂移理论的理论。 我们用这些理论分析赌徒的废版过程、 彩色算法、 2SAT 算法和莫兰 进程版本, 不带偏见。 我们提供的最后工具是有限的国家空间过程的紧凑标语, 我们应用到这个过程。 我们的目标是让读者在他们自己的研究中应用漂移理论, 来得出可获取的证据, 并教授一个简单的工具。