This study develops a calibrated beam-based algorithm with global awareness for neural abstractive summarization, aiming to improve the local optimality problem of the original beam search in a rigorous way. Specifically, a novel global protocol is proposed based on the attention distribution to stipulate how a global optimal hypothesis should attend to the source. A global scoring function is then developed to regulate beam search to generate summaries in a more near-global optimal fashion. This novel design enjoys a distinctive property, i.e. the global attention distribution could be predicted before inference, enabling stepwise improvements on the beam search through the global scoring function. Extensive experiments on $9$ datasets show that the global-aware inference significantly improves state-of-the-art summarization models even using empirical hyper-parameters. The algorithm is also proven robust as it remains to generate meaningful texts with corrupted attention distributions. The codes and a comprehensive set of examples are available.
翻译:这项研究开发了一种校准的基于光束的算法,以全球对神经抽象总称的认识为基础,目的是以严格的方式改善原始波束搜索的当地最佳性问题。 具体地说,根据关注分布,提出了一个新的全球协议,以规定全球最佳假设应该如何照顾源头。 然后开发了一个全球评分功能,以管理波束搜索,以更接近全球的最佳方式生成摘要。 这个新设计具有独特的特性,即在推论之前可以预测全球的注意分布,从而能够通过全球评分功能逐步改进波束搜索。 有关9美元数据集的广泛实验表明,即使使用经验性超参数,全球觉察觉的推论也显著改进了最先进的总和化模型。 这个算法也证明是健全的,因为它仍然能够产生有意义的文字,而注意力分布却被腐蚀。 代码和一套全面的范例是现成的。