We present a new method for face recognition from digital images acquired under varying illumination conditions. The method is based on mathematical modeling of local gradient distributions using the Radon Cumulative Distribution Transform (R-CDT). We demonstrate that lighting variations cause certain types of deformations of local image gradient distributions which, when expressed in R-CDT domain, can be modeled as a subspace. Face recognition is then performed using a nearest subspace in R-CDT domain of local gradient distributions. Experiment results demonstrate the proposed method outperforms other alternatives in several face recognition tasks with challenging illumination conditions. Python code implementing the proposed method is available, which is integrated as a part of the software package PyTransKit.
翻译:我们提出了一个在各种照明条件下获得的数字图像表面识别新方法,该方法以使用雷达累积分布变换(R-CDT)对当地梯度分布进行数学模型计算为基础。我们证明,照明变异导致某些类型的当地图像梯度分布变形,如果以R-CDT域表示,可以模拟成一个子空间。然后,在R-CDT域使用最接近的当地梯度分布子空间进行面对面识别。实验结果显示,拟议的方法优于若干面部识别任务中的其他替代方法,具有挑战性照明条件。可得到实施拟议方法的Python代码,该代码作为软件包PyTransKit的一部分被整合。