We introduce an algorithm to solve linear inverse problems regularized with the total (gradient) variation in a gridless manner. Contrary to most existing methods, that produce an approximate solution which is piecewise constant on a fixed mesh, our approach exploits the structure of the solutions and consists in iteratively constructing a linear combination of indicator functions of simple polygons.
翻译:我们引入了一种算法来解决与完全(渐变)变异成正轨的线性反向问题。 与大多数现有方法相反,这些方法在固定网格上产生的近似解决方案是固定不变的,我们的方法利用了解决方案的结构,并反复构建了简单多边形指标函数的线性组合。