Learning nonlinear dynamics from aggregate datais a challenging problem because the full trajectory of each individual is not available, namely, the individual observed at one time may not beobserved at the next time point, or the identity ofindividual is unavailable. This is in sharp contrastto learning dynamics with full trajectory data, on which the majority of existing methods are based. We propose a novel method using the weak form of Fokker Planck Equation(FPE) -- a partial differential equation -- to describe the density evolution of data in a sampled form, which is then combined with Wasserstein generative adversarial network (WGAN) in the training process. Insuch a sample based framework we are able to learn the nonlinear dynamics from aggregate data without explicitly solving FPE. More importantly, our model can also readily handle high dimensional cases by leveraging deep neural networks. We demonstrate our approach in the context of aseries of synthetic and real-world data sets.
翻译:从综合数据中学习非线性动态是一个具有挑战性的问题,因为每个个人没有完整的轨迹,也就是说,在某一时间观察到的个人在下一个时间点可能无法观察到,或者没有个人的身份。这是一个与完全轨迹数据形成鲜明对比的学习动态,而大多数现有方法都以全部轨迹数据为基础。我们提出了一个新颖的方法,使用微弱的Fokker Planck Eqquation(FPE)形式 -- -- 一种部分差异方程式 -- -- 来描述抽样数据密度的演变,然后与培训过程中的Wasserstein 基因对抗网络(WGAN)相结合。在这种基于样本的框架中,我们可以从综合数据中学习非线性动态,而没有明确地解决FPE。更重要的是,我们的模型也可以通过利用深层神经网络来随时处理高维度案例。我们展示了我们在合成和真实世界数据集系列中的做法。