Top-N recommendation is a challenging problem because complex and sparse user-item interactions should be adequately addressed to achieve high-quality recommendation results. The local latent factor approach has been successfully used with multiple local models to capture diverse user preferences with different sub-communities. However, previous studies have not fully explored the potential of local models, and failed to identify many small and coherent sub-communities. In this paper, we present Local Collaborative Autoencoders (LOCA), a generalized local latent factor framework. Specifically, LOCA adopts different neighborhood ranges at the training and inference stages. Besides, LOCA uses a novel sub-community discovery method, maximizing the coverage of a union of local models and employing a large number of diverse local models. By adopting autoencoders as the base model, LOCA captures latent non-linear patterns representing meaningful user-item interactions within sub-communities. Our experimental results demonstrate that LOCA is scalable and outperforms state-of-the-art models on several public benchmarks, by 2.99~4.70% in Recall and 1.02~7.95% in NDCG, respectively.
翻译:高端建议是一个具有挑战性的问题,因为应充分处理复杂和稀少的用户项目互动,以达到高质量的建议结果。当地潜伏因素方法已成功地与多个地方模型一起使用,以捕捉不同次社区的不同用户偏好。然而,以前的研究尚未充分探索当地模型的潜力,未能确定许多小型和连贯的次社区。在本文件中,我们介绍了地方协作自动编码器(LOCA),这是一个普遍的当地潜伏要素框架。具体地说,LOCA在培训和推断阶段采用了不同的邻里范围。此外,LOCA还采用了一种新的次社区发现方法,最大限度地扩大地方模型结合的覆盖面,并使用大量不同的当地模型。通过采用自动编码器作为基础模型,LOCA捕捉了代表子社区内有意义的用户项目互动的潜在非线性模式。我们的实验结果表明,LOCAB在几个公共基准上,其规模可扩缩,且超出最新状态模式,分别是2.99-4.70 %和NDCG的1.02%-7.95%。