Neural architectures that learn potential energy surfaces from molecular data have undergone fast improvement in recent years. A key driver of this success is the Message Passing Neural Network (MPNN) paradigm. Its favorable scaling with system size partly relies upon a spatial distance limit on messages. While this focus on locality is a useful inductive bias, it also impedes the learning of long-range interactions such as electrostatics and van der Waals forces. To address this drawback, we propose Ewald message passing: a nonlocal Fourier space scheme which limits interactions via a cutoff on frequency instead of distance, and is theoretically well-founded in the Ewald summation method. It can serve as an augmentation on top of existing MPNN architectures as it is computationally cheap and agnostic to other architectural details. We test the approach with four baseline models and two datasets containing diverse periodic (OC20) and aperiodic structures (OE62). We observe robust improvements in energy mean absolute errors across all models and datasets, averaging 10% on OC20 and 16% on OE62. Our analysis shows an outsize impact of these improvements on structures with high long-range contributions to the ground truth energy.
翻译:近些年来,从分子数据中学习潜在能源表面的神经结构经历了快速的改进。 成功的关键驱动因素是信息传递神经网络(MPNN)模式。 它的系统规模的有利缩放部分取决于电文的空间距离限制。 虽然对地点的这种关注是一种有用的感应偏差, 但也阻碍了远程互动的学习, 如电statics 和 van der Waals 力量。 为了解决这一缺陷, 我们提议Ewald 信息传递: 一个非本地的Fourier空间方案, 它通过断开频率而不是距离来限制互动, 并且从理论上讲在 Ewald 比较法中有充分的依据。 它可以作为现有MPNN 结构之上的增强, 因为它在计算上是廉价的, 对其他建筑细节具有不可知觉性。 我们用四个基线模型和两个包含不同周期(OC20)和周期结构(OE62)的数据集测试该方法。 我们观察到所有模型和数据集在能源绝对错误方面的有力改进, 平均在OC20 和 OE62 62 中为10% 16 % 。 我们的分析显示这些改进对于高地面结构的真理影响。</s>