Reference texts such as encyclopedias and news articles can manifest biased language when objective reporting is substituted by subjective writing. Existing methods to detect bias mostly rely on annotated data to train machine learning models. However, low annotator agreement and comparability is a substantial drawback in available media bias corpora. To evaluate data collection options, we collect and compare labels obtained from two popular crowdsourcing platforms. Our results demonstrate the existing crowdsourcing approaches' lack of data quality, underlining the need for a trained expert framework to gather a more reliable dataset. By creating such a framework and gathering a first dataset, we are able to improve Krippendorff's $\alpha$ = 0.144 (crowdsourcing labels) to $\alpha$ = 0.419 (expert labels). We conclude that detailed annotator training increases data quality, improving the performance of existing bias detection systems. We will continue to extend our dataset in the future.
翻译:在客观报告被主观书面文件取代时,百科全书和新闻文章等参考文本可能表现出偏见。现有的检测偏向的方法主要依靠附加说明的数据来培训机器学习模式。然而,低注解协议和可比性是现有媒体偏向公司的一个重大缺陷。为了评估数据收集选项,我们收集并比较了从两个受欢迎的众包平台获得的标签。我们的结果表明,现有众包办法缺乏数据质量,强调需要经过培训的专家框架来收集更可靠的数据集。通过建立这样一个框架和收集第一个数据集,我们能够将Krippendorff的$=0.144(采购标签)改进为$\alpha$=0.419(专家标签)。我们的结论是,详细的注解培训提高了数据质量,改进了现有偏差探测系统的性能。我们今后将继续扩大我们的数据集。