Sequential data with serial correlation and an unknown, unstructured, and dynamic background is ubiquitous in neuroscience, psychology, and econometrics. Inferring serial correlation for such data is a fundamental challenge in statistics. We propose a total variation constrained least square estimator coupled with hypothesis tests to infer the serial correlation in the presence of unknown and unstructured dynamic background. The total variation constraint on the dynamic background encourages a piece-wise constant structure, which can approximate a wide range of dynamic backgrounds. The tuning parameter is selected via the Ljung-Box test to control the bias-variance trade-off. We establish a non-asymptotic upper bound for the estimation error through variational inequalities. We also derive a lower error bound via Fano's method and show the proposed method is near-optimal. Numerical simulation and a real study in psychology demonstrate the excellent performance of our proposed method compared with the state-of-the-art.
翻译:序列相关和未知、无结构化和动态背景的序列数据在神经科学、心理学和计量经济学中普遍存在。 推断这些数据的序列相关是统计中的一个基本挑战。 我们提出一个总变差限制最小正方估计值,同时提出假设测试,以推断在未知和非结构化动态背景情况下的序列相关关系。 动态背景的总体变差制约鼓励一个片断常态结构,可以大致接近多种动态背景。 调试参数是通过 Ljung-Box 测试选择的,以控制偏差偏差交易。 我们为通过变差不平等估计错误建立了非正方位上限。 我们还通过Fano 方法得出一个较低的误差,并显示拟议方法是近乎最佳的。 数字模拟和真正的心理学研究表明我们拟议方法与最新技术相比的出色表现。