In this paper, we propose a two-stage method called Spline Assisted Partial Differential Equation involved Model Identification (SAPDEMI) to efficiently identify the underlying partial differential equation (PDE) models from the noisy data. In the first stage -- functional estimation stage -- we employ the cubic spline to estimate the unobservable derivatives, which serve as candidates included the underlying PDE models. The contribution of this stage is that, it is computational efficient because it only requires the computational complexity of the linear polynomial of the sample size, which achieves the lowest possible order of complexity. In the second stage -- model identification stage -- we apply Least Absolute Shrinkage and Selection Operator (Lasso) to identify the underlying PDE models. The contribution of this stage is that, we focus on the model selections, while the existing literature mostly focuses on parameter estimations. Moreover, we develop statistical properties of our method for correct identification, where the main tool we use is the primal-dual witness (PDW) method. Finally, we validate our theory through various numerical examples.
翻译:在本文中,我们建议了一种两阶段方法,即 " 微线辅助部分差异化 ",即 " 模型识别(SAPDEMI) ",以有效地确定来自噪音数据的部分偏差方程(PDEE)模型。在第一阶段 -- -- 功能估计阶段 -- -- 我们使用立方Spline Spline来估计无法观测的衍生物,作为候选人,这包括基本的PDE模型。这个阶段的贡献是,它具有计算效率,因为它仅需要样本大小线性多面体的计算复杂性,从而达到尽可能最低的复杂程度。在第二阶段 -- -- 模型识别阶段 -- -- 我们应用最小绝对缩小和选择操作器(Lasso)来确定基本的PDE模型。这个阶段的贡献是,我们侧重于模型选择,而现有文献主要侧重于参数估算。此外,我们开发了我们用于正确识别的方法的统计属性,我们使用的主要工具是原始证人(PDW)方法。最后,我们通过各种数字实例验证我们的理论。