Let $G$ be a graph and $S\subseteq V(G)$ with $|S|\geq 2$. Then the trees $T_1, T_2, \cdots, T_\ell$ in $G$ are \emph{internally disjoint Steiner trees} connecting $S$ (or $S$-Steiner trees) if $E(T_i) \cap E(T_j )=\emptyset$ and $V(T_i)\cap V(T_j)=S$ for every pair of distinct integers $i,j$, $1 \leq i, j \leq \ell$. Similarly, if we only have the condition $E(T_i) \cap E(T_j )=\emptyset$ but without the condition $V(T_i)\cap V(T_j)=S$, then they are \emph{edge-disjoint Steiner trees}. The \emph{generalized $k$-connectivity}, denoted by $\kappa_k(G)$, of a graph $G$, is defined as $\kappa_k(G)=\min\{\kappa_G(S)|S \subseteq V(G) \ \textrm{and} \ |S|=k \}$, where $\kappa_G(S)$ is the maximum number of internally disjoint $S$-Steiner trees. The \emph{generalized local edge-connectivity} $\lambda_{G}(S)$ is the maximum number of edge-disjoint Steiner trees connecting $S$ in $G$. The {\it generalized $k$-edge-connectivity} $\lambda_k(G)$ of $G$ is defined as $\lambda_k(G)=\min\{\lambda_{G}(S)\,|\,S\subseteq V(G) \ and \ |S|=k\}$. These measures are generalizations of the concepts of connectivity and edge-connectivity, and they and can be used as measures of vulnerability of networks. It is, in general, difficult to compute these generalized connectivities. However, there are precise results for some special classes of graphs. In this paper, we obtain the exact value of $\lambda_{k}(S(n,\ell))$ for $3\leq k\leq \ell^n$, and the exact value of $\kappa_{k}(S(n,\ell))$ for $3\leq k\leq \ell$, where $S(n, \ell)$ is the Sierpi\'{n}ski graphs with order $\ell^n$. As a direct consequence, these graphs provide additional interesting examples when $\lambda_{k}(S(n,\ell))=\kappa_{k}(S(n,\ell))$. We also study the some network properties of Sierpi\'{n}ski graphs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
145+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
137+阅读 · 2019年9月24日
【NeurIPS2019】图变换网络:Graph Transformer Network
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月13日
Arxiv
0+阅读 · 2023年12月12日
Arxiv
0+阅读 · 2023年12月11日
Arxiv
0+阅读 · 2023年12月10日
Arxiv
0+阅读 · 2023年12月9日
Arxiv
0+阅读 · 2023年12月9日
Arxiv
0+阅读 · 2023年12月8日
VIP会员
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 2023年12月13日
Arxiv
0+阅读 · 2023年12月12日
Arxiv
0+阅读 · 2023年12月11日
Arxiv
0+阅读 · 2023年12月10日
Arxiv
0+阅读 · 2023年12月9日
Arxiv
0+阅读 · 2023年12月9日
Arxiv
0+阅读 · 2023年12月8日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员