We use results in [M. Crouzeix and A. Greenbaum,Spectral sets: numerical range and beyond, SIAM Jour. Matrix Anal. Appl., 40 (2019), pp. 1087-1101] to derive a variety of K-spectral sets and show how they can be used in some applications. We compare the K-values derived here to those that can be derived from a straightforward application of the Cauchy integral formula, by replacing the norm of the integral by the integral of the resolvent norm. While, in some cases, the new upper bounds on the optimal K-value are much tighter than those from the Cauchy integral formula, we show that in many cases of interest, the two values are of the same order of magnitude, with the bounds from the Cauchy integral formula actually being slightly smaller. We give a partial explanation of this in terms of the numerical range of the resolvent at points near an ill-conditioned eigenvalue.
翻译:我们使用[M. Crouzix 和 A. Greenbaum, Spetratracr 中的结果[M. Crouzix 和 A. Greenbaum, Spetracral 组:数字范围及范围,SIM Jour. Tracism Anal. Appl., 40 (2019), pp.1087-1101] 来得出各种K光谱组,并展示如何在某些应用中使用这些光谱组。我们将这里产生的K值与直接应用Cauchy 集成公式得出的K值进行比较,用决心规范的集成部分取代整体体的规范。虽然在某些情况下,最佳K值的新上限比Cauchy集成公式中的值要紧得多,但我们表明,在许多感兴趣的情况下,这两个值的大小相同,而Cauchy 集成公式的界限实际上略小一些。我们部分地解释了在靠近不完善的egenvality点的固度的数值的数值范围。