Large Language Models (LLMs) have strong capabilities in code comprehension, but fine-tuning costs and semantic alignment issues limit their project-specific optimization; conversely, code models such CodeBERT are easy to fine-tune, but it is often difficult to learn vulnerability semantics from complex code languages. To address these challenges, this paper introduces the Multi-Model Collaborative Vulnerability Detection approach (M2CVD) that leverages the strong capability of analyzing vulnerability semantics from LLMs to improve the detection accuracy of code models. M2CVD employs a novel collaborative process: first enhancing the quality of vulnerability semantic description produced by LLMs through the understanding of project code by code models, and then using these improved vulnerability semantic description to boost the detection accuracy of code models. We demonstrated M2CVD's effectiveness on two real-world datasets, where M2CVD significantly outperformed the baseline. In addition, we demonstrate that the M2CVD collaborative method can extend to other different LLMs and code models to improve their accuracy in vulnerability detection tasks.
翻译:暂无翻译