Bayesian inverse problems are often computationally challenging when the forward model is governed by complex partial differential equations (PDEs). This is typically caused by expensive forward model evaluations and high-dimensional parameterization of priors. This paper proposes a domain-decomposed variational auto-encoder Markov chain Monte Carlo (DD-VAE-MCMC) method to tackle these challenges simultaneously. Through partitioning the global physical domain into small subdomains, the proposed method first constructs local deterministic generative models based on local historical data, which provide efficient local prior representations. Gaussian process models with active learning address the domain decomposition interface conditions. Then inversions are conducted on each subdomain independently in parallel and in low-dimensional latent parameter spaces. The local inference solutions are post-processed through the Poisson image blending procedure to result in an efficient global inference result. Numerical examples are provided to demonstrate the performance of the proposed method.
翻译:当远方模型由复杂的局部差异方程式(PDEs)管理时,巴伊斯反面问题往往在计算上具有挑战性。这通常是由昂贵的远方模型评估和前方高维参数化造成的。本文建议采用一种由域分解的自动变异式Markov链-Markov Markov Trate Carlo(DD-VAE-MCC)方法来同时应对这些挑战。通过将全球物理域分割成小次域,拟议方法首先根据当地历史数据构建当地确定性基因化模型,从而提供高效的当地前方演示。高斯进程模型具有主动学习地址的域分解界面条件。随后,在平行的和低维潜值参数空间对每个子域独立进行反位。后,通过Poisson图像混合程序处理当地推断解决方案,从而产生高效的全球推断结果。提供了数字实例,以证明拟议方法的性能。