项目名称: 硅基红外焦平面器件的原位纳米横向生长应变复合衬底研究

项目编号: No.61307115

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 王元樟

作者单位: 厦门理工学院

项目金额: 29万元

中文摘要: 当前大规模红外焦平面器件的研制需要大面积、低位错密度的碲镉汞材料。分子束外延Si基HgCdTe材料由于Si衬底具有面积大、晶体质量高、杂质少、成本低、机械强度高、与Si读出电路热匹配等优点而广受重视。但是Si衬底与HgCdTe外延材料之间19.3%的晶格失配以及很大的热失配将导致大量的位错增殖,严重影响长红外焦平面器件的工作性能。本项目以应用于红外焦平面器件的Si基应变复合衬底为研究对象,引入分子束外延原位横向生长ZnTe纳米图形衬底与HgTe/CdTe超晶格结构的新方法,研究大失配异质外延体系应力场作用下的原位横向生长动力学机理,通过具体的结构设计制备Si基应变复合衬底,以达到控制外延层中的位错走向,进一步降低Si基应变复合材料位错密度的目的;并建立相应的多层异质结构的应力应变计算模型,对Si基应变复合衬底的结构进行优化,以进一步提高Si基碲镉汞红外焦平面器件的性能与热可靠性。

中文关键词: 硅;横向生长;应变;复合衬底;焦平面器件

英文摘要: The infrared technology requires infrared focle-plane arrays(IRFPAs) of increased formats with low dislocation density HgCdTe material.Si becomes much more attractive substrate for HgCdTe MBE growth, because of its larger available size,high crystal quality, fewer impurities, low cost, high mechanical strength and thermal matching with Si readout chip. Due to the large lattice-mismatch of 19.3% and thermal mismatch, great deal of misfit dislocations are generated at the interface of Si substrates and in HgCdTe epilayers, which will greatly impact on the performance of LW IRFPAs. By using the effect of stress field in large mismatch heteroepitaxial system, the in-situ lateral growth of ZnTe nano-patterning on Si substrate and the HgTe/CdTe superlattice structure will be studied in this project to reduce the dislocation density of the Si-based strain composite substrate. The model for strain and stress distribution of multilayer heterostructure will also be made to optimize the structure of Si-based strain compostie substrate. As the results, the device performance and thermal reliability of HgCdTe IRFPAs will be further improved.

英文关键词: Silicon;lateral growth;strain;composite substrate;focal plane arrays

成为VIP会员查看完整内容
0

相关内容

专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
36+阅读 · 2021年4月23日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
132+阅读 · 2021年2月17日
专知会员服务
18+阅读 · 2020年12月23日
小目标检测技术研究综述
专知会员服务
118+阅读 · 2020年12月7日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
36+阅读 · 2021年4月23日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
132+阅读 · 2021年2月17日
专知会员服务
18+阅读 · 2020年12月23日
小目标检测技术研究综述
专知会员服务
118+阅读 · 2020年12月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员