The maximum ${\log}_q$ likelihood estimation method is a generalization of the known maximum $\log$ likelihood method to overcome the problem for modeling non-identical observations (inliers and outliers). The parameter $q$ is a tuning constant to manage the modeling capability. Weibull is a flexible and popular distribution for problems in engineering. In this study, this method is used to estimate the parameters of Weibull distribution when non-identical observations exist. Since the main idea is based on modeling capability of objective function $\rho(x;\boldsymbol{\theta})=\log_q\big[f(x;\boldsymbol{\theta})\big]$, we observe that the finiteness of score functions cannot play a role in the robust estimation for inliers. The properties of Weibull distribution are examined. In the numerical experiment, the parameters of Weibull distribution are estimated by $\log_q$ and its special form, $\log$, likelihood methods if the different designs of contamination into underlying Weibull distribution are applied. The optimization is performed via genetic algorithm. The modeling competence of $\rho(x;\boldsymbol{\theta})$ and insensitiveness to non-identical observations are observed by Monte Carlo simulation. The value of $q$ can be chosen by use of the mean squared error in simulation and the $p$-value of Kolmogorov-Smirnov test statistic used for evaluation of fitting competence. Thus, we can overcome the problem about determining of the value of $q$ for real data sets.


翻译:最大 $ log Q 的可能性估算法是将已知的最大正态 $ (x;\boldsymbol_theta}) Q\ bigh [f(x;\boldsymbol_theta}\ big] 美元 用于模拟能力。 参数 $q 美元 是用于管理模型能力的调校常数。 Weibull 是一个灵活和流行的工程问题分布方法。 在此研究中, 当存在非同质的观测时, 此方法用于估算 Weibull 分布的参数。 由于主要理念基于目标函数 $(x;\boldsymbol) (x;\boldsymbol) 的模型能力, 以 $ (x) log_qt) 来模型, 来克服不相同的时间差值 [qrblog$] 。 我们观察到的是, 正在使用正价 的数学数据 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
浅谈贝叶斯和MCMC
AI100
14+阅读 · 2018年6月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
浅谈贝叶斯和MCMC
AI100
14+阅读 · 2018年6月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员