Wasserstein distributionally robust optimization estimators are obtained as solutions of min-max problems in which the statistician selects a parameter minimizing the worst-case loss among all probability models within a certain distance (in a Wasserstein sense) from the underlying empirical measure. While motivated by the need to identify optimal model parameters or decision choices that are robust to model misspecification, these distributionally robust estimators recover a wide range of regularized estimators, including square-root lasso and support vector machines, among others, as particular cases. This paper studies the asymptotic normality of these distributionally robust estimators as well as the properties of an optimal (in a suitable sense) confidence region induced by the Wasserstein distributionally robust optimization formulation. In addition, key properties of min-max distributionally robust optimization problems are also studied, for example, we show that distributionally robust estimators regularize the loss based on its derivative and we also derive general sufficient conditions which show the equivalence between the min-max distributionally robust optimization problem and the corresponding max-min formulation.


翻译:瓦塞斯坦分布稳健的优化估计值是作为微轴问题的解决方案获得的,统计员在其中选择了一个参数,将所有概率模型中最坏的损耗从基本经验性计量的某一距离(瓦塞斯坦意义)内的所有概率模型中最小化。虽然这些分布稳健的估算值是出于需要确定最优化模型参数或决定选择,以模拟错误的分类,但这些分布稳健的估算值回收了广泛的常规估计值,包括平根的拉索和辅助矢量机器,等等。本文研究了这些分布稳健的估值器的失常性正常性,以及瓦塞斯坦分布稳健的优化配方所引出的最佳(适当意义上)信心区域的特性。此外,还研究了微轴分布稳健的分布稳健优化问题的关键特性。例如,我们发现分布稳健的估值使基于其衍生物的损失规范,我们还得出了一般的充分条件,表明微轴分布稳健的优化问题与相应的最大量度配方之间的等值。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
4+阅读 · 2019年6月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文笔记】ICLR 2018 Wasserstein自编码器
专知
30+阅读 · 2018年6月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月13日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年6月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文笔记】ICLR 2018 Wasserstein自编码器
专知
30+阅读 · 2018年6月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员