We are interested in estimating the location of what we call "smooth change-point" from $n$ independent observations of an inhomogeneous Poisson process. The smooth change-point is a transition of the intensity function of the process from one level to another which happens smoothly, but over such a small interval, that its length $\delta\_n$ is considered to be decreasing to $0$ as $n\to+\infty$. We show that if $\delta\_n$ goes to zero slower than $1/n$, our model is locally asymptotically normal (with a rather unusual rate $\sqrt{\delta\_n/n}$), and the maximum likelihood and Bayesian estimators are consistent, asymptotically normal and asymptotically efficient. If, on the contrary, $\delta\_n$ goes to zero faster than $1/n$, our model is non-regular and behaves like a change-point model. More precisely, in this case we show that the Bayesian estimators are consistent, converge at rate $1/n$, have non-Gaussian limit distributions and are asymptotically efficient. All these results are obtained using the likelihood ratio analysis method of Ibragimov and Khasminskii, which equally yields the convergence of polynomial moments of the considered estimators. However, in order to study the maximum likelihood estimator in the case where $\delta\_n$ goes to zero faster than $1/n$, this method cannot be applied using the usual topologies of convergence in functional spaces. So, this study should go through the use of an alternative topology and will be considered in a future work.


翻译:我们有兴趣估算我们所谓的“moot changi-cent-poisson ” 的位置。 平滑的变换点是一个过程强度功能从一个水平向另一个水平的过渡, 顺利地发生, 但间隔过短, 其长度 $delta ⁇ n 被认为是以美元兑美元的速度下降到零美元。 我们显示, 如果$delta ⁇ n 低于1美元兑美元, 我们的模型是本地的, 而不是正常的( 相当不寻常的 $\ sqrt=delta ⁇ n/ n} 美元 ) 。 平滑的变点是过程强度功能函数从一个水平向另一个水平的过渡, 顺利地, 但是在如此短的间隔中, 美元对美元兑一美元兑一, 美元兑一美元兑一美元兑一 。 如果相反, 美元兑一美元兑一美元兑一考虑的模型应该是不固定的, 我们的模型应该表现得像一个变点模型。 更准确地说, 我们的显示, Bayian 应用的估量模型是正常的正常的, 未来比率比 的比 美元对美元对美元 美元对美元 的数值分析结果的, 最高值 方法是一致的,, 以美元对美元对美元对美元对美元 方法的 。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
已删除
将门创投
6+阅读 · 2017年7月6日
Arxiv
0+阅读 · 2021年4月9日
Arxiv
0+阅读 · 2021年4月8日
Arxiv
0+阅读 · 2021年4月7日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
已删除
将门创投
6+阅读 · 2017年7月6日
Top
微信扫码咨询专知VIP会员