Humans are expert explorers. Understanding the computational cognitive mechanisms that support this efficiency can advance the study of the human mind and enable more efficient exploration algorithms. We hypothesize that humans explore new environments efficiently by inferring the structure of unobserved spaces using spatial information collected from previously explored spaces. This cognitive process can be modeled computationally using program induction in a Hierarchical Bayesian framework that explicitly reasons about uncertainty with strong spatial priors. Using a new behavioral Map Induction Task, we demonstrate that this computational framework explains human exploration behavior better than non-inductive models and outperforms state-of-the-art planning algorithms when applied to a realistic spatial navigation domain.
翻译:人类是专家探索者。 了解支持这种效率的计算认知机制可以推进人类思维的研究,并促成更有效的探索算法。 我们假设人类利用从先前探索的空间收集的空间信息来推断未观测空间的结构,从而有效探索新的环境。 这种认知过程可以使用一个高层次的贝叶斯框架的系统启动程序进行计算模型,该程序明确说明存在强大的空间前科的不确定性。 使用一个新的行为图上岗任务,我们证明这个计算框架比非引入模型和在应用到现实的空间导航领域时的超先进的规划算法更好地解释人类探索行为。