Compared to 2D images, 3D point clouds are much more sensitive to rotations. We expect the point features describing certain patterns to keep invariant to the rotation transformation. There are many recent SOTA works dedicated to rotation-invariant learning for 3D point clouds. However, current rotation-invariant methods lack generalizability on the point clouds in the open scenes due to the reliance on the global distribution, \ie the global scene and backgrounds. Considering that the output activation is a function of the pattern and its orientation, we need to eliminate the effect of the orientation.In this paper, inspired by the idea that the network weights can be considered a set of points distributed in the same 3D space as the input points, we propose Weight-Feature Alignment (WFA) to construct a local Invariant Reference Frame (IRF) via aligning the features with the principal axes of the network weights. Our WFA algorithm provides a general solution for the point clouds of all scenes. WFA ensures the model achieves the target that the response activity is a necessary and sufficient condition of the pattern matching degree. Practically, we perform experiments on the point clouds of both single objects and open large-range scenes. The results suggest that our method almost bridges the gap between rotation invariance learning and normal methods.
翻译:与 2D 图像相比, 3D 点云对旋转更为敏感。 我们期待描述某些模式的点点特征能够保持旋转变换。 最近有许多 SOTA 工作致力于对 3D 点云进行旋转和变换学习。 然而, 目前的旋转- 变化方法缺乏开放场景点云的通用性, 因为依赖全球分布, \ 即全球场景和背景。 考虑到输出激活是模式及其方向的函数, 我们需要消除方向的影响 。 在本文中, 基于网络重量可被视为与输入点一样分布在同一 3D 空间的一组点的想法, 我们建议 Weight- Fature 调整( WFA), 以便通过将功能与网络重量的主轴相匹配, 来构建本地的不变化参考框架( IRF) 。 我们WFA 算法为所有场景的点云提供了一般解决方案, 我们需要消除方向的影响 。 WFAA确保模型达到目标, 即响应活动是模式必要和充分的条件, 匹配度。 实际上, 我们建议在最小天体和大天体之间进行正常的云际实验。