Most algorithmic studies on multi-agent information design so far have focused on the restricted situation with no inter-agent externalities; a few exceptions investigated special game classes such as zero-sum games and second-price auctions but have all focused only on optimal public signaling and exhibit sweepingly negative results. This paper initiates the algorithmic information design of both \emph{public} and \emph{private} signaling in a fundamental class of games with negative externalities, i.e., atomic singleton congestion games, with wide application in today's digital economy, machine scheduling, routing, etc. For both public and private signaling, we show that the optimal information design can be efficiently computed when the number of resources is a constant. To our knowledge, this is the first set of computationally efficient algorithms for information design in succinctly representable many-player games. Our results hinge on novel techniques such as developing ``reduced forms'' to compactly represent players' marginal beliefs. When there are many resources, we show computational intractability results. To overcome the challenge of multiple equilibria, here we introduce a new notion of equilibrium-\emph{oblivious} NP-hardness, which rules out any possibility of computing a good signaling scheme, irrespective of the equilibrium selection rule.
翻译:迄今为止,关于多试剂信息设计的大多数算法研究都侧重于有限的情况,没有代理外差因素;少数例外调查了零和游戏和第二价格拍卖等特殊游戏类别,但都只侧重于最佳公共信号和展示广泛的负面结果。根据我们的知识,这是第一套计算高效的信息设计方法,其设计简洁地代表许多玩家游戏。我们的结果取决于新颖的技术,如开发“单吨原子拥挤游戏”,以压实的方式代表玩家的边缘信念。当资源众多时,我们展示了可计算性结果。对于公共和私人信号而言,我们展示了最佳信息设计在资源数量不变的情况下可以有效计算。据我们所知,这是第一套计算高效的信息设计方法,以简洁地代表许多玩家游戏。我们的结果取决于开发“微调形式”等新技术,以压实的方式代表玩家的边缘信念。当资源众多时,我们展示了可计算性的结果。为了克服多种偏差的挑战,在资源数量不变的情况下,我们可以有效地计算出最佳信息设计。这里我们引入了一种计算平衡规则的新概念,而不论是否稳度选择何种新的标准。