In this letter, we consider multiple statistical classification problem where a sequence of n independent and identically distributed observations, that are generated by one of M discrete sources, need to be classified. The source distributions are not known, however one has access to labeled training sequences, of length N, from each source. We consider the case where the unknown source distributions are estimated from the training sequences, then the estimates are used as nominal distributions in a robust hypothesis test. Specifically, we consider the robust DGL test due to Devroye et al. and provide non-asymptotic exponential bounds, that are functions of N{n, on the error probability of classification.


翻译:在本信中,我们考虑了多种统计分类问题,因为需要分类由M离散来源之一产生的独立和相同分布的观测序列。来源分布不详,但每个来源都可获得标记的培训序列(N长度),但每个来源都有N长度。我们考虑了从培训序列中估算出未知来源分布的情况,然后在可靠的假设测试中将估计数用作名义分布。具体地说,我们认为,由于Devroye等人(DGL)测试的结果,DGL测试是稳健的,提供了非抽取指数界限,这是N{n(n)在分类误差概率方面的功能。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】数据科学家统计实战,附代码与409页pdf
专知会员服务
59+阅读 · 2020年11月6日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2021年8月4日
Arxiv
0+阅读 · 2021年8月2日
Arxiv
0+阅读 · 2021年8月2日
Arxiv
0+阅读 · 2021年8月1日
Arxiv
0+阅读 · 2021年8月1日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】数据科学家统计实战,附代码与409页pdf
专知会员服务
59+阅读 · 2020年11月6日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员