This paper makes the following original contributions. First, we develop a unifying framework for testing shape restrictions based on the Wald principle. The test has asymptotic uniform size control and is uniformly consistent. Second, we examine the applicability and usefulness of some prominent shape enforcing operators in implementing our framework. In particular, in stark contrast to its use in point and interval estimation, the rearrangement operator is inapplicable due to a lack of convexity. The greatest convex minorization and the least concave majorization are shown to enjoy the analytic properties required to employ our framework. Third, we show that, despite that the projection operator may not be well-defined/behaved in general parameter spaces such as those defined by uniform norms, one may nonetheless employ a powerful distance-based test by applying our framework. Monte Carlo simulations confirm that our test works well. We further showcase the empirical relevance by investigating the relationship between weekly working hours and the annual wage growth in the high-end labor market.
翻译:本文的原始贡献如下。 首先, 我们根据 Wald 原则, 制定一个测试形状限制的统一框架。 测试具有无症状的统一大小控制, 并且一致一致 。 其次, 我们检查某些突出的形状执行操作者在执行我们的框架时的适用性和有用性。 特别是, 与其在点数和间隔估计中的使用形成鲜明对比, 重新排列操作者由于缺乏共性而无法适用。 最大的细微度和最小集中度显示享有使用我们的框架所需的分析特性。 第三, 我们表明, 尽管投影操作者在一般参数空间, 如统一规范所定义的参数空间, 可能没有很好的定义/, 但是, 仍然可以通过应用我们的框架, 使用一个强大的远程测试。 蒙特卡洛 模拟证实我们的测试效果良好。 我们通过调查高端劳动力市场每周工作时间与年工资增长之间的关系, 进一步展示了经验相关性 。