Model predictive control (MPC) schemes have a proven track record for delivering aggressive and robust performance in many challenging control tasks, coping with nonlinear system dynamics, constraints, and observational noise. Despite their success, these methods often rely on simple control distributions, which can limit their performance in highly uncertain and complex environments. MPC frameworks must be able to accommodate changing distributions over system parameters, based on the most recent measurements. In this paper, we devise an implicit variational inference algorithm able to estimate distributions over model parameters and control inputs on-the-fly. The method incorporates Stein Variational gradient descent to approximate the target distributions as a collection of particles, and performs updates based on a Bayesian formulation. This enables the approximation of complex multi-modal posterior distributions, typically occurring in challenging and realistic robot navigation tasks. We demonstrate our approach on both simulated and real-world experiments requiring real-time execution in the face of dynamically changing environments.
翻译:模型预测控制(MPC)计划在应对非线性系统动态、限制和观测噪音等许多具有挑战性的控制任务中,在应对非线性系统动态、限制和观测噪音时,具有积极和有力表现的良好记录。这些方法尽管取得了成功,但往往依赖简单的控制分布,这可以限制其在高度不确定和复杂环境中的性能。模型预测控制(MPC)框架必须能够根据最新的测量结果,适应系统参数的分布变化。在本文件中,我们设计了一种隐含的变异推算法,能够估计模型参数的分布和在飞行时的控制投入。这种方法包括了Stein variation梯度下降,以近似作为粒子集的目标分布,并根据Bayesian的配方进行更新。这使得复杂的多模式外层分布的近似近,通常发生在具有挑战性和现实性的机器人导航任务中。我们展示了我们在面对动态变化的环境时需要实时执行的模拟和现实世界实验的方法。