Mesh generation is of great value in various applications involving computer graphics and virtual content, yet designing generative models for meshes is challenging due to their irregular data structure and inconsistent topology of meshes in the same category. In this work, we design a novel sparse latent point diffusion model for mesh generation. Our key insight is to regard point clouds as an intermediate representation of meshes, and model the distribution of point clouds instead. While meshes can be generated from point clouds via techniques like Shape as Points (SAP), the challenges of directly generating meshes can be effectively avoided. To boost the efficiency and controllability of our mesh generation method, we propose to further encode point clouds to a set of sparse latent points with point-wise semantic meaningful features, where two DDPMs are trained in the space of sparse latent points to respectively model the distribution of the latent point positions and features at these latent points. We find that sampling in this latent space is faster than directly sampling dense point clouds. Moreover, the sparse latent points also enable us to explicitly control both the overall structures and local details of the generated meshes. Extensive experiments are conducted on the ShapeNet dataset, where our proposed sparse latent point diffusion model achieves superior performance in terms of generation quality and controllability when compared to existing methods.


翻译:在涉及计算机图形和虚拟内容的各种应用中,光学生成具有巨大的价值,然而,由于不规则的数据结构和同一类别中梅舍的地形分布不一,因此为梅舍设计基因化模型具有挑战性。在这项工作中,我们设计了一个新颖的隐性点扩散模型,用于网状生成。我们的关键洞察力是将点云视为介质的中间体,并模拟点云的分布。虽然可以通过诸如“形状”作为点等技术从点云中生成模具,但直接生成模具的挑战也可以有效避免。为了提高我们网状生成方法的效率和可控性,我们提议进一步将云点编码为一组稀薄的隐性点,并配有点语义上有意义的特征。在其中,两个DDPMM在稀薄潜在点空间中接受了培训,分别用于模拟这些隐性点位置和特征的分布。我们发现,在这种暗层空间采样比直接采样密度点(SAPPA)等技术更快。此外,稀薄的潜性潜伏点还使我们能够明确控制生成的模具模型的总体结构和局部细节。当我们所拟的可变现性质量方法实现可变现的可变现性数据时,在可变现性质量控制状态上进行广泛的实验。</s>

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
123+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
100+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年10月27日
Arxiv
44+阅读 · 2022年9月6日
Arxiv
24+阅读 · 2022年1月3日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员