Multiple shapes must be obtained in the mechanical design process to satisfy the required design specifications. The inverse design problem has been analyzed in previous studies to obtain such shapes. However, finding multiple shapes in a short computation period is difficult while using the conventional methods. This paper proposes the use of the conditional variational autoencoders (CVAE) with normal distribution, denoted by N-CVAE, along with the von Mises-Fischer distribution, denoted by S-CVAE, to find multiple solutions for the inverse design problems. Both the CVAE models embed shapes into a latent space. The S-CVAE enables the separation of data in the latent space, whereas the N-CVAE embeds the data in a narrow space. These different features are used for various tasks in this study. In one of the tasks, the dataset consists of only one type of data and generates similar airfoils. Here, S-CVAE outperforms N-CVAE because it can separate the data. Another task involves combining different types of airfoils and generating new types of data. N-CVAE is useful in this instance since it embeds different shapes in the same latent area, due to which, the model outputs intermediate shapes of different types. The shape-generation capability of S-CVAE and N-CVAE are experimentally compared in this study.
翻译:机械设计过程中必须获得多个形状才能满足要求的设计规格。 在以前的研究中已经分析了反向设计问题,以获得这些形状。 但是, 在使用常规方法的同时, 很难在短的计算期内找到多个形状。 本文建议使用条件的自动自动变换器(CVAE), 通常分布方式由 N- CIVAE 表示, 以及由 S- CVAE 表示的 von Mises- Fischer 分布方式, 以找到反向设计问题的多种解决方案。 两种 CVAE 模型都将形状嵌入潜藏空间。 S- CVAE 使得在潜藏空间中能够分离数据, 而 N- CVAE 则在狭小的空间中嵌入数据。 这些不同特性用于本研究中的各种任务。 在其中一项任务中, 数据集只包含一种类型的数据, 并产生相似的气流体。 S- CVAE 与N- CVAE 相容, 因为可以区分数据。 另一项任务涉及将不同种类的气流和新类型数据生成方式的模型, 自此类的内层- 的模型为不同类型。