Medical multiple-choice question answering (MCQA) is particularly difficult. Questions may describe patient symptoms and ask for the correct diagnosis, which requires domain knowledge and complex reasoning. Standard language modeling pretraining alone is not sufficient to achieve the best results. \citet{jin2020disease} showed that focusing masked language modeling on disease name prediction when using medical encyclopedic paragraphs as input leads to considerable MCQA accuracy improvement. In this work, we show that (1) fine-tuning on generated MCQA dataset outperforms the masked language modeling based objective and (2) correctly masking the cues to the answers is critical for good performance. We release new pretraining datasets and achieve state-of-the-art results on 4 MCQA datasets, notably +5.7\% with base-size model on MedQA-USMLE.
翻译:医学多选择问题解答(MCQA)特别困难。 问题可能描述患者症状,要求正确的诊断,这需要领域知识和复杂的推理。 标准语言在培训前的建模本身不足以取得最佳效果。 \citet{jin2020 disacise} 显示,当使用医学百科全书段落作为输入时,将蒙面语言建模集中在疾病名的预测上,可大大改进MCQA的准确性。 在这项工作中,我们显示:(1) 对生成的MCQA数据集的微调超过了以隐形语言建模为基础的目标,(2) 正确遮掩答案的提示对于良好表现至关重要。 我们发布了新的预培训数据集,并在4个MCQA数据集上实现最新结果,特别是+5.7<unk>,以MedQA-USMLE为基模。</s>