This paper is merged with arXiv:2107.08965v2. We refer the reader to the full and updated version. We study the problem of allocating a set of indivisible goods among agents with 2-value additive valuations. Our goal is to find an allocation with maximum Nash social welfare, i.e., the geometric mean of the valuations of the agents. We give a polynomial-time algorithm to find a Nash social welfare maximizing allocation when the valuation functions are integrally 2-valued, i.e., each agent has a value either $1$ or $p$ for each good, for some positive integer $p$. We then extend our algorithm to find a better approximation factor for general 2-value instances.
翻译:本文与ArXiv: 2107.878965v2. 合并后,我们请读者参阅完整和更新版本。我们研究了在具有2值添加值估价的代理商之间分配一组不可分割货物的问题。我们的目标是在纳什最高社会福利范围内找到分配,即代理商估值的几何平均值。我们给出了一个多米时算法,以便在估值功能具有2值的情况下,即每个代理商对每件商品都有价值1美元或1美元,对正整数美元。然后我们扩展我们的算法,为一般2值案例找到更好的近似系数。