We study quasi-Monte Carlo (QMC) integration of smooth functions defined over the multi-dimensional unit cube. Inspired by a recent work of Pan and Owen, we study a new construction-free median QMC rule which can exploit the smoothness and the weights of function spaces adaptively. For weighted Korobov spaces, we draw a sample of $r$ independent generating vectors of rank-1 lattice rules, compute the integral estimate for each, and approximate the true integral by the median of these $r$ estimates. For weighted Sobolev spaces, we use the same approach but with the rank-1 lattice rules replaced by high-order polynomial lattice rules. A major advantage over the existing approaches is that we do not need to construct good generating vectors by a computer search algorithm, while our median QMC rule achieves almost the optimal worst-case error rate for the respective function space with any smoothness and weights, with a probability that converges to 1 exponentially fast as $r$ increases. Numerical experiments illustrate and support our theoretical findings.
翻译:在Pan和Owen最近的工作启发下,我们研究了一个新的无建筑的QMC中中位规则,该中位规则可以适应性地利用功能空间的平滑和重量。对于加权的Korobov 空间,我们抽取了一个样本,抽取了1级拉特斯规则独立生成矢量的美元,计算了每个值的整体估计,并接近于这些值的中位数。对于加权的Sobolev空间,我们使用同样的方法,但以1级拉特斯规则取代了1级拉特斯规则。现有方法的主要优势是,我们不需要用计算机搜索算法来构建良好的生成矢量,而我们的QMC中位规则几乎实现了各自功能空间最坏的误差率,且具有任何光度和重量,其概率接近于1倍速增长的美元。数字实验说明并支持了我们的理论结论。