This paper studies the problem of distributionally robust model predictive control (MPC) using total variation distance ambiguity sets. For a discrete-time linear system with additive disturbances, we provide a conditional value-at-risk reformulation of the MPC optimization problem that is distributionally robust in the expected cost and chance constraints. The distributionally robust chance constraint is over-approximated as a simpler, tightened chance constraint that reduces the computational burden. Numerical experiments support our results on probabilistic guarantees and computational efficiency.
翻译:本文研究了使用全变差距离模糊装置的分布稳健模型预测控制(MPC)问题。对于具有添加干扰的离散时间线性系统,我们为MPC优化问题提供了有条件的高风险价值重组,在预期成本和概率限制下,这种配置稳健的概率限制过于接近于更简单、更严格的机会限制,从而减轻计算负担。数字实验支持了我们在概率保障和计算效率方面的结果。