Fully conditional specification (FCS) is a convenient and flexible multiple imputation approach. It specifies a sequence of simple regression models instead of a potential complex joint density for missing variables. However, FCS may not converge to a stationary distribution. Many authors have studied the convergence properties of FCS when priors of conditional models are non-informative. We extend to the case of informative priors. This paper evaluates the convergence properties of the normal linear model with normal-inverse gamma prior. The theoretical and simulation results prove the convergence of FCS and show the equivalence of prior specification under the joint model and a set of conditional models when the analysis model is a linear regression with normal inverse-gamma priors.
翻译:完全有条件规格(FCS)是一种方便和灵活的多重估算方法,它规定了简单回归模型的顺序,而不是缺失变量的潜在复杂联合密度;然而,FCS可能无法与固定分布相趋同;许多作者研究了FCS的趋同特性,如果有条件模型的前身是非信息规范的,我们研究了FCS的趋同特性;我们研究了信息前科的情况;本文件评估了普通线性模型与以前正常反向伽马的趋同特性;理论和模拟结果证明了FCS的趋同性,并表明在联合模型下以前的规格和一套有条件模型的等同性,如果分析模型是直线回归,而以前是正常反向伽马的。