This article presents an important theorem, which shows that from the moments of the standard normal distribution one can generate density functions originating a family of models. Additionally, we discussed that different random variable domains are achieved with transformations. For instance, we adopted the moment of order two, from the proposed theorem, and transformed it, which allowed us to exemplify this class as unit distribution. We named it as Alpha-Unit (AU) distribution, which contains a single positive parameter $\alpha$ ($\text{AU}(\alpha) \in [0,1]$). We presented its properties and showed two estimation methods for the $\alpha$ parameter, the maximum likelihood estimator (MLE) and uniformly minimum-variance unbiased estimator (UMVUE) methods. In order to analyze the statistical consistency of the estimators, a Monte Carlo simulation study was carried out, where the robustness was demonstrated. As real-world application, we adopted two sets of unit data, the first regarding the dynamics of Chilean inflation in the post-military period, and the other regarding the daily maximum relative humidity of the air in the Atacama Desert. In both cases shown, the AU model is competitive, whenever the data present a range greater than 0.4 and extremely heavy asymmetric tail. We compared our model against other commonly used unit models, such as the beta, Kumaraswamy, logit-normal, simplex, unit-half-normal, and unit-Lindley distributions.
翻译:这篇文章提出了一个重要的理论, 它表明, 从标准正常分布的瞬间, 一个人可以生成源自模型组合的密度函数 。 此外, 我们讨论过, 通过转换可以实现不同的随机可变域 。 例如, 我们采纳了从拟议理论的顺序第二点, 并改变了它, 从而使我们能够将这一类作为单位分布的示范。 我们把它命名为阿尔法- 单位( AU) 分布, 它包含一个单一正参数$alpha$( text{AU}( ALpha) ) 。 我们展示了它的属性, 并展示了两种估算方法, 即 $\ alpha$ 参数, 最大概率估计器( MLE) 和统一的最低差异点( 最小值不偏差) 。 为了分析估算器的统计一致性, 我们进行了一个蒙特卡洛( Aut Carlo) 模拟研究, 它包含一个单一正数的正数参数 $\ $\ $\ text{AU} ( albly) = $ [ 0, $ $ $ 1, $, we a laf, the fir date the prium date date data data date, lagal lax the side remod the sal remod the sal ortial remodial ortial date sal date sal res, ortime res ortime ortime ortime ortime oral ortial ortial ortime ortime oral date.