The great performance of machine learning algorithms and deep neural networks in several perception and control tasks is pushing the industry to adopt such technologies in safety-critical applications, as autonomous robots and self-driving vehicles. At present, however, several issues need to be solved to make deep learning methods more trustworthy, predictable, safe, and secure against adversarial attacks. Although several methods have been proposed to improve the trustworthiness of deep neural networks, most of them are tailored for specific classes of adversarial examples, hence failing to detect other corner cases or unsafe inputs that heavily deviate from the training samples. This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model robustness against different unsafe inputs. In particular, four coverage analysis methods are proposed and tested in the architecture for evaluating multiple detection logics. Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs, introducing limited extra-execution time and memory requirements.


翻译:机器学习算法和深神经网络在几种认知和控制任务方面的出色表现正在促使该行业在安全关键应用中采用这类技术,如自主机器人和自驾驶车,但目前需要解决若干问题,使深层次学习方法更加可信、可预测、安全和有保障,免受对抗性攻击,虽然已提出若干方法来提高深层神经网络的可信赖性,但大多数方法都是针对特定类别的对抗性实例而设计的,因此无法发现与培训样本严重偏差的其他转角案例或不安全投入。本文提出一个基于覆盖范式的轻量级监测结构,以加强模型对不同不安全投入的稳健性。特别是,在评估多种探测逻辑的架构中提出并测试了四种覆盖性分析方法。实验结果表明,拟议的方法在发现强大的对抗性实例和分配性投入方面都是有效的,引入了有限的超执行时间和记忆要求。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
专知会员服务
44+阅读 · 2020年10月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
12+阅读 · 2021年5月3日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
3+阅读 · 2017年11月20日
VIP会员
相关资讯
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员