We propose using a pre-trained segmentation model to perform diagnostic classification in order to achieve better generalization and interpretability, terming the technique reverse-transfer learning. We present an architecture to convert segmentation models to classification models. We compare and contrast dense vs sparse segmentation labeling and study its impact on diagnostic classification. We compare the performance of U-Net trained with dense and sparse labels to segment A-lines, B-lines, and Pleural lines on a custom dataset of lung ultrasound scans from 4 patients. Our experiments show that dense labels help reduce false positive detection. We study the classification capability of the dense and sparse trained U-Net and contrast it with a non-pretrained U-Net, to detect and differentiate COVID-19 and Pneumonia on a large ultrasound dataset of about 40k curvilinear and linear probe images. Our segmentation-based models perform better classification when using pretrained segmentation weights, with the dense-label pretrained U-Net performing the best.
翻译:我们建议使用培训前的分解模型来进行诊断分类,以更好地概括和解释,用技术反向转移学习术语来表示技术反向转移学习。我们提出了一个将分解模型转换为分类模型的架构。我们比较和对比密集和稀疏的分解标签,并研究其对诊断分类的影响。我们用密集和稀疏的标签将受过训练的U-Net的性能与A-线、B线和透视仪的性能与4个病人的肺部超声波扫描定制数据集进行对比。我们的实验显示,密集标签有助于减少假阳性检测。我们研究了密集和稀少的经过训练的U-Net的分类能力,并将其与非未受过训练的U-Net进行对比,以探测和区分大约40k curvilinear 和线性探测图像的大型超声波数据集中的COVID-19和肺部。我们基于分解模型在使用预先训练的分解重量时,使用密集和经过预先训练的U-Net进行最佳表现时,能进行更好的分类。